THE KATZ–KLEMM–VAFA CONJECTURE FOR SURFACES
نویسندگان
چکیده
منابع مشابه
Vojta’s Conjecture Implies the Batyrev-manin Conjecture for K3 Surfaces
Vojta’s Conjectures are well known to imply a wide range of results, known and unknown, in arithmetic geometry. In this paper, we add to the list by proving that they imply that rational points tend to repel each other on algebraic varieties with nonnegative Kodaira dimension. We use this to deduce, from Vojta’s Conjectures, conjectures of Batyrev-Manin and Manin on the distribution of rational...
متن کاملThe Nekrasov Conjecture for Toric Surfaces
The Nekrasov conjecture predicts a relation between the partition function for N = 2 supersymmetric Yang–Mills theory and the Seiberg-Witten prepotential. For instantons on R, the conjecture was proved, independently and using different methods, by Nekrasov-Okounkov, Nakajima-Yoshioka, and Braverman-Etingof. We prove a generalized version of the conjecture for instantons on noncompact toric sur...
متن کاملThe Atiyah–Jones conjecture for rational surfaces
is minimal precisely when the curvature FA is anti-self dual, i.e. FA = −∗FA, in which case A is called an instanton of charge k on X. Let MIk(X) denote the moduli space of framed instantons on X with charge k and let Ck(X) denote the space of all framed gauge equivalence classes of connections on X with charge k. In 1978, Atiyah and Jones [AJ] conjectured that the inclusion MIk(X) → Ck(X) indu...
متن کاملThe Weil Conjecture for K3 Surfaces
Denote by Fq a field of q elements, F̄q an algebraic closure of Fq, φ ∈ Gal(F̄q/Fq) the Frobenius substitution x 7→ xq and F = φ−1 the “geometric Frobenius”. Denote by X a scheme (separated of finite type) over Fq, and denote by X̄ the scheme over F̄q obtained by extension of scalars. For all closed points x of X, let deg(x) = [k(x) : Fq] be the degree over Fq of the residue extension. The zeta fun...
متن کاملThe Auslander-Reiten Conjecture for Group Rings
This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Forum of Mathematics, Pi
سال: 2016
ISSN: 2050-5086
DOI: 10.1017/fmp.2016.2